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Introduction 
 
Developing a new drug is difficult - it requires significant funding to find potential 
candidate molecules and prove, through rounds of clinical trials, that they are safe 
for use and effective [31]. A major bottleneck in this process is research and 
development (R&D).  
 
Before a drug can even go into trial, one needs to first design that drug. There is an 
immense amount of research needed beforehand to choose exactly what molecule 
that drug should be. Historically, this process has required many trial-and-error 
feedback loops in order to identify effective leads and further supply chains . For 
instance, one can find a molecule that has a certain property and can tweak it 
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slightly to give it slightly different benefits, while keeping the core property intact 
[25].  
 
Unfortunately, clinical trials are both expensive and time-consuming [13] [31]. 
Between setting up the trial itself - finding ideal patients that both have the 
condition that a drug aims to cure and would benefit from that drug (versus 
established medications), developing dosing schedules, and ensuring the trials - and 
accurately completing piles of regulatory paperwork (and the costs to get an FDA 
approved trial or similar to ensure efficacy in the first place), running clinical trials for 
every single potential molecule is not practical. With an expensive feedback loop 
and a low approval rate, pharmaceutical companies need to ensure that the 
compounds they take to trial have the highest likelihood of succeeding [31].  
 
If it were possible to simulate everything from initial lead generation to clinical trials 
in advance and more accurately estimate a drug’s likelihood of success, without all 
of the overhead of running multiple physical clinical trials, the cost to develop new 
drugs would go down drastically - providing newer opportunities to test drugs to 
target more illnesses and reducing the costs of these drugs, making them more 
accessible to more people and for a wider array of ailments.  
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This is where computational methods help. They provide a digical, in silico, way of 
“testing” various aspects of the drug-discovery pipeline - hopefully, giving us a faster 
and a dramatically cheaper way to model biological processes as accurately as 
possible. 
 
Currently, pharmaceutical companies have been working towards what they believe 
to be AI-powered solutions to optimize their drug discovery, testing, and distribution 
processes. Quantum technologies, and especially quantum computing, however, 
have the potential to provide speedups to all of these sectors - especially to 
problems that can be written as combinatorial optimization formulations.  
 
In this article, I will be covering the methodologies and functionalities behind 
approaches towards solving four relevant combinatorial optimization problems: 

 
3 

https://unsplash.com/@nci?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/man-in-white-dress-shirt-sitting-on-black-office-rolling-chair-X9Iq79PFif4?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash


 

molecular docking, pharma-based supply chain optimization, drug synergy and 
antagonism prediction, and clinical trial design.  
 
Current Drug Discovery Pipeline Process 
 
According to Araujo et al., there are five main stages of the drug discovery pipeline 
[33]: 1) identification of the drug target, 2) hit identification and lead discovery, 3) 
lead optimization, 4) pre-clinical development/wet-lab testing, and 5) clinical trials. 
 
The first stage, identification of the drug target, is the stage that outlines the initial 
definition of the problem. The drug target is the protein or gene associated with an 
ailment or disease - this helps narrow the search. This step translates a vague goal 
of preventing some illness to the biological mechanism for how to do so. To assist in 
measuring the success of potential drug-candidates, the target selection stage also 
lists out biomarkers, which are biological/chemical/physical measurable signs of a 
drug’s effectiveness that allow clinical trial scientists to quantify the impact of a drug 
candidate.  

 
The second stage, hit identification and lead discovery, is where a large number of 
compounds/trial molecules are vetted and filtered to generate a feasible candidate 
set of potential drugs. This is the step where the actual drug, the molecules that will 
eventually make up the final drug, get discovered.  
 
This is done through a variety of techniques, both computational and wet-lab 
testing, to sort through millions of compounds [34]. Some of these techniques 
include in silico screening, where more accurate and faster computational methods 
are developed for high throughput screening, fragment based discovery, Structure 
Activity Relationship, tissue cultures, cell-based arrays, compound management, 
and array ready plates.  
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Lead optimization - the third stage of the drug discovery process - takes the filtered 
list of potential molecules, all that have been confirmed to have some potential 
relationship with the target, and further tests them to ensure they have the desired 
effect. Pharmacokinetics (PK) and Pharmacodynamics (PD) are two methods in 
studying the properties of a drug once absorbed/adsorbed in a patient. 
Pharmacodynamics focuses on how a drug affects the organism, through chemical 
binding to receptors and the immediate and post effect that binding has on the 
organism.  Pharmacokinetics, on the other hand, focuses on how an “organism 
affects the drug”, figuring out how the chemical gets digested and transformed, from 
when the drug enters the body to when it gets eliminated (either completely 
dissolved or excreted). 
 
This is also a good time to note that the drug discovery process, unlike how it’s 
depicted in the diagram above, is not always a linear process. There are many times 
where the lead optimization stage finds that none of the potential leads found in the 
lead discovery phase were viable - in which case, a new set of leads needs to be 
created. This back and forth process of real-world drug creation schedules more 
closely mimics the scientific process, shown below, rather than the linear diagram 
shown above. 
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Caption - Modified drug development pipeline that accounts for the non-linear flow 
of work and multiple start points of a potential development pipeline 
 
After viable drug candidates are found, there is still one more stage before clinical 
trials - pre-clinical development. 
 
This stage is crucial to ensure that a drug candidate is safe for human consumption. 
More accurately, this stage ensures that a drug can’t cause serious harm in people. 
There are two main methods this stage uses: in vivo, testing in living organisms, or in 
vitro, testing outside of a living organism.  
 
This is also where the dosage formulation is developed. Pharma companies gather 
data on how a drug is absorbed, distributed, metabolized, and excreted (ADME) as 
well as the best way to deliver the drug. PK/PD, as mentioned above, can also be 
used in the pre-clinical phase to determine the safety of a drug. 
 
The final stage before a drug can be sold is clinical trials and regulatory approval. To 
ensure that all drugs are safe for human consumption, researchers/pharmaceutical 
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companies need to go through rigorous testing, with clinical trials and results 
approved by regulatory bodies (in the US, this is the Food and Drug Administration).  
 
The clinical trial and regulatory approval phase is a pretty interwoven phase, where 
the clinical trial process and results needs to be approved of by the trial location 
country’s regulatory body - this means that the trials need to be scientifically sound, 
have a large enough sample set, and that the results need to indicate safety and 
efficacy. 
 
Clinical efficacy is the measure of how well a drug does what it's supposed to do. 
This is less of a concern for the FDA (the FDA mainly ensures the safety of the drug 
when given to humans, and adherence to clinical trial endpoints) [40]. 
 
This stage itself has three typical phases. mirroring the three main clinical trials 
pharmaceutical companies need to complete: Phase I, Phase II, and Phase III.  
 
Each of the phases both builds up in scale and tests different questions [35]. Phase I, 
just like with the preclinical trial, focuses on ensuring a drug candidate is safe - 
testing the dosage formulation from the preclinical trial and drug itself on, typically 
healthy, human volunteers. Phase II focuses on the effectiveness of a drug, testing 
with sample sizes of a few hundred volunteers with the target disease, to see if the 
drug candidate actually affects the drug target (and reduces its related disease). 
Phase III increases the scale of testing, ranging from sample sizes of hundreds to 
several thousand patients with the target disease. This trial expands on the goal of 
Phase II, while providing the information needed for FDA approval of the drug.  
 
One of the main concerns that pharma companies have for conducting clinical trials 
is their cost, especially considering that only around 30% of drugs pass all 3 stages. 
According to Martin et. al, the median trial cost for each respective phase is $3.4 
million, $8.6 million, and $21.4 million - in total, this would be $33.4M for a phase III 
clinical trial for a single drug [31]. Obviously, this makes it infeasible to clinically test 
hundreds of these drugs, which emphasizes the importance of accurate lead 
identification and generation.  
 
Combinatorial Optimization 
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Combinatorial optimization is the method of formalizing a problem to find an optimal 
solution from a finite set of solutions.  
 
A simple example of a combinatorial optimization problem is, given a list of numbers, 
finding the sorted list. Our set of solutions would be all possible combinations of 
numbers in the list and our optimal solution would be the list of sorted numbers.  
 
The main goal with formalizing a problem is to use computers to search through the 
solution space as, with many practical problems, the solution space is often 
enormous. 
 
In the drug discovery pipeline, the main type of solution space are the molecular 
compounds that could potentially bind to a target, with each type of formalized 
problem “ranking” the effectiveness of these compounds to do a certain task. There 
are many different methods and formalized problems that quantify and optimize for 
one type of metric, like optimal ligand pose or structure alignment to a known 
molecule. There are, however, other solution spaces that exist towards the end of  
the drug development process. For example, formalizing clinical trial schedules 
encompasses a solution space that must optimize for  the cost and efficiency of a 
trial. 
 
 
Combinatorial Optimization Problem #1: Molecular Docking 
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Caption - Diagram from [32], visually showing the “lock-and-key” model of 

protein-ligand docking interactions. Just like how a key fits perfectly into the grooves 
of a lock, the ligand fits perfectly into the pocket of the protein. 

 
The Molecular Docking problem, assumed to be an NP-Hard problem [6], focuses on 
predicting how a ligand, a small molecule, binds to a protein’s pocket, the binding 
site of the protein.  
 
A protein’s shape dictates its function. Certain proteins have binding pockets to 
accomplish the task they were designed for. For example, cationic trypsin, a 
protease, helps digest food by breaking down proteins into smaller sets of amino 
acids, which are the building blocks for other proteins [26][27]. Even though cationic 
trypsin is an enzyme, its job only focuses on facilitating the breakdown of other 
proteins and peptides [36][37][38], not other molecules (like lipids or inorganic 
molecules). The way that cationic trypsin does this is by having the protein, that is 
going to be broken down, bind to trypsin’s pocket. Then, the trypsin pocket uses 
hydrolysis, the addition of a water molecule (H2O) to separate a molecule into two 
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parts through the donation of a H+ to one part and HO to the other part, to break 
down the protein. 
 
The key part of this process is the binding pocket and its binding sites  - these 
facilitate the entire process by providing a place for both proteins to interact with 
each other. If a different molecule binds to cationic trypsin’s pocket, it could interfere 
with the protein’s job. By changing the shape and conformal geometry of the protein 
through site-specific intermolecular electronic contacts during docking, this small 
molecule changes the function of cationic trypsin. This can make the protease 
incompetent towards cleaving proteins into a transiently or permanently 
dysfunctional state, i.e., protease inhibition.  
 
Therefore, this binding site almost acts like a switch for proteins, which is extremely 
useful in stopping the function of certain proteins - such as the HIV-1 Protease, the 
protein that aids in HIV reproduction in cells [27][28]. While cationic trypsin is helpful 
to humans by aiding in digesting food, the HIV-1 Protease protein cleaves Gag and 
Pol polyproteins, long chains of amino acids, into individual, smaller functional 
proteins into a form that aids in its reproduction. HIV-1 Protease creates the building 
block to replicate. If drug companies could find a different molecule that binds to 
HIV-1 Protease’s pocket and stays there, then we eliminate that protein’s function. 
It’s like throwing a wrench into the engine of a moving car - we can get the car to 
stop dead in its tracks.  
 
For pharmaceutical companies, the molecular docking problem is a formulation that 
allows us to calculate if a small molecule, a ligand, will bind to a protein of interest.  
 
Right now, there are a lot of existing softwares that perform molecular docking 
between proteins and ligands - AutoDock Vina, rDock, and SEED are the major 
molecular docking softwares [23].  
 
Two quantum algorithmic approaches to solve the Molecular Docking problem (with 
some designed to be run on three types of quantum processor units (QPUs)) are 1) 
the Quantum Approximate Optimization Algorithm (QAOA), largely run on 
gate-based quantum computers [4] [14], and 2) Quadratic Unconstrained Binary 
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Optimization (QUBO) formulations, run on quantum annealers [18], and continuously 
variable quantum devices.  
 

 
Caption - Molecular docking objective function formulation, where H_iso is the 

sub-graph isomorphism term that ensures hard constraints are met to get valid 
outputs and H_opt is the optimization term the simulated/quantum annealers 

minimize over. A and B are scaling constants, usually experimentally determined, to 
ensure hard constraints are met and x are binary variables that represent the 

measured state of the qubits [18]. 
 
Combinatorial Optimization Problem #2: Pharma-based Supply Chain Optimization 
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One of the most important stages of creating drugs is getting both the final products 
and their subcomponents to their final destinations - optimizing pharmaceutical 
supply chains is crucial in ensuring that drugs get to where they need to do 1) safely 
and 2) quickly [11].  
 
There are a couple of points of view for supply chain management. In this article, I’ll 
only focus on two of these POVs: the manufacturing side, and the hospital/end-user 
side. 
 
From the point of view of large, multinational  pharmaceutical companies, the ones 
that manufacture and distribute products, they’re focused primarily on answering 
one main question: How do we make sure the drugs get to the end patient in the 
shortest amount of time for the lowest cost? These companies also have constraints 
they’re held accountable for - to make these deliveries safely, they need to make sure 
they’re complying with regulations during shipping and, if needed, using 
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refrigeration units or other specialized transport methodologies required for different 
therapeutic deliveries to keep their contents from spoiling (which are speciality 
shipping containers, refrigeration units are a very finite resource because they need 
to be kept near electricity plugs throughout their journey) [15]. For companies like 
Sinopharm, they’re especially focused on developing a green supply chain - 
minimizing carbon output throughout their entire supply chain, from product creation 
to end user use [20]. 
 
Hospitals, however, are focused on balancing consumption with cost [1]. They want 
to answer the following question: how do we balance the inventory needs and 
storage costs of hospitals? Hospitals, of course, need to make sure they’re always 
stocked on the drugs they need - a shortage could cost someone’s life [16]. However, 
just like in transport, storing these drugs is expensive. They need to be kept in a safe 
environment and the drugs need to be used before their expiration date; many U.S. 
hospitals are also not legally allowed to stockpile or independently manufacture 
drugs to protect suppliers’ pricing and distribution schemes, forcing them to resort to 
overly-fragile Just-In-Time supply management. Many hospitals outsource these 
responsibilities to third-party storage companies - adding to the many expenses a 
hospital has.  
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Large, multinational pharmaceutical companies have already started developing 
solutions to these problems. Sinopharm, since 2020, has talked about their progress 
to creating a near zero-carbon supply chain in their yearly Sustainability Reports - 
they’ve released guidelines on “Green Supply Chain Construction” and for reducing 
carbon output in constructing and managing supply chains through optimization 
techniques in some internal whitepapers [39]. Merck and Co is looking into what 
they are characterizing as AI solutions for supply chain resilience [8] - making sure 
that, even in the face of disruptions, drugs can still get to where they need to go 
on-time, though Merck and Co have not stated how exactly they would use AI or 
other technologies to accomplish this goal. Johnson and Johnson is working on a 
solution for supply/demand prediction and for supply chain optimizations to help 
treatments reach patients faster.  
 
The green supply chain optimization formulation by Umme et al. [20] focuses on a 
case study - the researchers worked with a pharmaceutical company in Bangladesh 
to reduce their carbon emissions throughout the entire supply chain. Umme et al.’s 
work formulated a model to cover the journey from initial chemical supplier to 
manufacturer to distributor to retailer. Their work in creating a mixed-integer linear 
programming formulation provides an interesting gateway into a QUBO formulation 
of the same problem. It would be interesting to look into the QUBO’s ability to keep 
into account the different hard constraints on the problem, and how to balance the 
scaling parameters of each hard constraint to make sure the objective function is still 
being met while generating valid solutions.  
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Caption - Z1 optimizes over the total costs throughout the entire supply chain (from 
supply, production, distribution storage, and all transportation connections between 

the supply chain). Z2 minimizes the total carbon emissions throughout the supply 
chain [20].  

 
The formalized problem for hospital supply chain optimization is the Dynamic Filling 
Drug Optimization problem. The objective function for this problem has three main 
parts: the 1) medicine cost, mainly the cost of buying medicine weighted by the 
priority of the type of drug being bought, the 2) storage cost (the cost of storing 
medicine safely), and a 3) penalty cost to prevent supply shortages [1].  
 

 
Caption - Tarek et al. formulation of the Dynamic Filling Drug Optimization problem 
with the medicine, storage, and shortage penalty costs added to the minimization 

function (the first line), and the lowest mandatory drug, budget, and timeslot 
constraints imposed on the problem listed in the lines below [1]. 

 
Tarek et al. relate the Dynamic Filling Drug Optimization problem with the formalized 
Ski-Rental Problem. We have a person who wants to ski, but doesn’t know how long 
the snow season will last; should one buy or rent skis to get the most for their 
money? The Dynamic Filling Drug Optimization  problem is especially challenging 
because we don’t know the user's demand in advance, making shortage prediction 
more difficult 
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For these reasons, DFDO appears to be embeddable onto the Ski-Rental Problem 
because both can be represented by the more famous Knapsack problem; given an 
algorithm that perfectly finds solutions to the Ski-Rental problem (given that you 
have the inputs to the ski-rental problem in the right format), you can do some quick 
(polynomial-time) pre-processing for inputs of the DFDO problem to transform 
DFDO inputs into Ski-Rental formatted inputs, run the Ski-Rental algorithm, and 
then do some trivial post-processing to turn those Ski-Rental solutions into DFDO 
solutions 

 
Caption - Comparison of optimal solution’s cost with the Deep Reinforcement 

Learning (DRLD) model’s output cost from [1]. 
 
The solution by Tarek et al. was to use a deep reinforcement learning approach to 
solve this problem to prevent these shortages. After experimental testing to 
determine the learning rate, their algorithm converged on a solution that was very 
close to the optimal solution, though they did not provide precise bounds between 
the reinforcement approach’s output and the optimal solution. 
 
Combinatorial Optimization Problem #3: Predicting Drug Synergy and Antagonism 
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Drugs, when combined, don’t always act in the same way as the sum of their parts 
could lead one to believe. Certain drugs can have strong synergistic reactions, where 
their effects are more than the sum of their parts, or they can have antagonistic 
effects, canceling each other's effects out (i.e., they’re non-linear). 
 
Predicting drug synergy is the key to combining drugs for many medications, done 
with pharmacokinetics/pharmacodynamics. It could allow two existing drugs to 
provide a greater reaction, while limiting the side effects that large doses of those 
drugs could have individually. The combination achieves the same end result in a 
safer manner [10]. Drug antagonist is the opposite reaction - where one drug 
inhibits, or stops, the effect of another drug. Paying attention to these antagonistic 
relationships ensures that we do not have two drugs that should be targeting 
different ailments targeting each other [21]. 
 
Finding these synergies and antagonisms has historically been through trial and 
error. AstraZeneca’s DREAM challenge [12], established in 2014, created a 
community effort to computationally predict the effects of drug combinations; the 
hope was to create an accurate method to drastically reduce the number of 
combinations that needed expensive and time-consuming wet lab testing to prove 
these drug synergies and antagonisms. 
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The challenge was split up into two subchallenges, with the first objective function 
was the average weighted Pearson correlation of the predicted vs observed synergy 
scores across each drug combination. The second objective function was optimizing 
the separation of predicted synergy and non-synergy scores through the ANOVA 
score - which has a linear regression formulation that accounts for the drug 
combination, cell line, and the binary synergy prediction vector [3].  
 

 

 
Caption - Standard form and linear regression formulation of the ANOVA formula 

[12] 
 
The top scoring team in all sub-challenges, Guan et al. from the University of 
Michigan, was a  novel network propagation [9], that inputted the information from 
the individual drug’s effects and simulated molecular data, and used random walks 
to transfer information throughout the algorithm’s saved network. They were able to 
accurately predict the best synergistic drug pairs in 30% of the cell lines and were 
able to correctly place the best synergistic drug pair in the top five predicted pairs in 
73% of test cell lines. 
 
Combinatorial Optimization Problem #4: Clinical Trial Design Optimization 
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Clinical trial design is the key step in ensuring that the potential drug candidates 
pharma companies create are both safe for human use and effective at their 
proposed jobs in humans. There are many places to optimize clinical trial design, but 
this article will only focus on three problems that have already been formalized: 
optimizing the trial site [7], cohort identification, and drug dose scheduling [19].  
 
Trial site optimization chooses the right site, with specific characteristics, for a 
clinical trial. Cohort identification finds the right people for the trial - the goal is to 
pick patients that are 1) relevant to the trial (they have the condition you want to 
target with your drug) and 2) that the trial would benefit (especially if there isn’t any 
other effective treatment alternative for the specific condition the drug is targeting). 
Drug dose scheduling personalizes the trial for each patient, making sure the trial 
gives patients the right dose and at the right times to properly understand the 
effects of the drug. 
 
A few pharmaceutical companies are looking at using AI models to optimize these 
problems. Johnson and Johnson is using AI to improve targeted clinical trial 
recruitment - it’s finding patients that could benefit from medicine that Johnson and 
Johnson is making. Further description of what these AI methodologies are and if 
they include combinatorial optimization have not been publicly disclosed as of now. 

 
19 

https://unsplash.com/@cdc?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/person-holding-tube-XLhDvfz0sUM?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash


 

Merck and Co has also partnered with McKinsey [8] and its AI arm QuantumBlack to 
automate Clinical Study Reports w/ LLMs - reducing the time to finish the paperwork 
behind running clinical trials. 
 
For the algorithmic research on drug dose scheduling, Tsuchiwata et al. from Pfizer 
[19] created a genetic algorithm to optimize the blood sample schedule (a similar 
problem to the drug dose scheduling problem) for patients in a bioequivalence study 
in pediatrics.  
 

 
Caption - the fitness function for the blood scheduling genetic algorithm as a sum of 
the mean absolutely percentage error (MAPE) and the root mean square percentage 
error (RMSPE) [19] 
 
Wang et al. developed a three-step optimization strategy [21] to optimize the 
combination of drug therapies. Their work focuses on both the drug interactions (as 
talked about in the prior section) but also the individual drug doses, and balancing 
both to bring out the synergies between the two drugs - though they note that this is 
only the first step in proving the efficiency and accuracy of combinatorial 
optimization problems for combinatorial drug therapy. 
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Caption - Wang et al. drug combination optimization formulation based on 
optimizing phenotype combinations. [21] 
 
Conclusion 
 
Right now, molecular docking software has had the greatest success in the 
applicability of combinatorial optimization to pharmaceutical development - with 
well used and well characterized software, like AutoDesk Vina, providing molecular 
docking capabilities, capable of running complex protein-ligand complexes from 
PDBBind+ on home computers in reasonable times. 
 
With regards to better solving these combinatorial optimization problems using 
quantum algorithms or quantum devices  most algorithms, especially around the 
QAOA/VQE algorithms and QUBO formulations, have not been tested beyond small 
case studies. For reference, the Molecular Docking QUBO paper [18] by Triuzzi et al. 
tested their cost function on pockets with 15 atoms - resulting in QUBOs with fewer 
than 100 variables. By comparison, most protein-ligand complexes on PDBBind 
would have a QUBO size of around 50,000 to 150,000 variables, with the maximum 
size being closer to 1,000,000 variables.  
 
There has also been research on quantum algorithms for clinical trial design 
optimization. Doga  et al. mentions how optimizing trial site selection is extremely 
similar to portfolio optimization, a problem that has both classical and quantum 
algorithms for the finance industry. There is also a potential for quantum machine 
learning for clinical trial simulations, but there are still difficulties in fully simulating 
human biology - and assumptions and data taken from static measurements (like 
x-ray crystallography) or animal based models can prove to be too inaccurate for 
human clinical trials.  
 
While quantum technology literature has been focused on the time and space 
scaling of their algorithms - on if their algorithms are theoretically faster than 
classical algorithm and if the number of qubits needed is feasible for future quantum 
computers, there has been a lack of up-to-date algorithmic testing on quantum 
hardware, which is quickly growing past the scale of small-scale test cases. Papers 
on practical quantum algorithms have been shying away from using the growth of 
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quantum processing units (QPUs) to, in turn, scale the problem test sets on their 
quantum algorithms. This makes it difficult to both empirically test scaling of 
quantum algorithms and to compare outputs of quantum algorithms with their 
state-of-the-art classical algorithm counterparts. But, current improvements in 
combinatorial optimization, as covered in this post, combined with improvements in 
quantum algorithms and various aspects of QPU development mean that this is an 
area that should be greater emphasized in future work, including our own 
 
Thank you for reading my blog post! I’d love to hear if you’re working on a 
biopharma related combinatorial optimization formulation that I didn’t mention or if 
you’re working on a better algorithm than the ones I covered! 
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