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Introduction

Developing a new drug is difficult - it requires significant funding to find potential
candidate molecules and prove, through rounds of clinical trials, that they are safe
for use and effective [31]. A major bottleneck in this process is research and
development (R&D).

Before a drug can even go into trial, one needs to first design that drug. There is an
immense amount of research needed beforehand to choose exactly what molecule
that drug should be. Historically, this process has required many trial-and-error
feedback loops in order to identify effective leads and further supply chains . For
instance, one can find a molecule that has a certain property and can tweak it
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slightly to give it slightly different benefits, while keeping the core property intact
[25].

Unfortunately, clinical trials are both expensive and time-consuming [13] [31].
Between setting up the trial itself - finding ideal patients that both have the
condition that a drug aims to cure and would benefit from that drug (versus
established medications), developing dosing schedules, and ensuring the trials - and
accurately completing piles of regulatory paperwork (and the costs to get an FDA
approved trial or similar to ensure efficacy in the first place), running clinical trials for
every single potential molecule is not practical. With an expensive feedback loop
and a low approval rate, pharmaceutical companies need to ensure that the
compounds they take to trial have the highest likelihood of succeeding [31].

If it were possible to simulate everything from initial lead generation to clinical trials
in advance and more accurately estimate a drug’s likelihood of success, without all
of the overhead of running multiple physical clinical trials, the cost to develop new
drugs would go down drastically - providing newer opportunities to test drugs to
target more illnesses and reducing the costs of these drugs, making them more
accessible to more people and for a wider array of ailments.
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This is where computational methods help. They provide a digical, in silico, way of
“testing” various aspects of the drug-discovery pipeline - hopefully, giving us a faster
and a dramatically cheaper way to model biological processes as accurately as
possible.

Currently, pharmaceutical companies have been working towards what they believe
to be Al-powered solutions to optimize their drug discovery, testing, and distribution
processes. Quantum technologies, and especially quantum computing, however,
have the potential to provide speedups to all of these sectors - especially to
problems that can be written as combinatorial optimization formulations.

In this article, | will be covering the methodologies and functionalities behind
approaches towards solving four relevant combinatorial optimization problems:
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molecular docking, pharma-based supply chain optimization, drug synergy and
antagonism prediction, and clinical trial design.

Current Drug Discovery Pipeline Process

According to Araujo et al., there are five main stages of the drug discovery pipeline
[33]: 1) identification of the drug target, 2) hit identification and lead discovery, 3)
lead optimization, 4) pre-clinical development/wet-lab testing, and 5) clinical trials.

The first stage, identification of the drug target, is the stage that outlines the initial
definition of the problem. The drug target is the protein or gene associated with an
ailment or disease - this helps narrow the search. This step translates a vague goal
of preventing some iliness to the biological mechanism for how to do so. To assist in
measuring the success of potential drug-candidates, the target selection stage also
lists out biomarkers, which are biological/chemical/physical measurable signs of a
drug’s effectiveness that allow clinical trial scientists to quantify the impact of a drug
candidate.

Target Hit Identification & Lead Pre-clinical Clinical Trials &
Selection Lead Discovery Optimization Development Regulatory Approval
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The second stage, hit identification and lead discovery, is where a large number of
compounds/trial molecules are vetted and filtered to generate a feasible candidate
set of potential drugs. This is the step where the actual drug, the molecules that will
eventually make up the final drug, get discovered.

This is done through a variety of techniques, both computational and wet-lab
testing, to sort through millions of compounds [34]. Some of these techniques
include in silico screening, where more accurate and faster computational methods
are developed for high throughput screening, fragment based discovery, Structure
Activity Relationship, tissue cultures, cell-based arrays, compound management,
and array ready plates.
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Lead optimization - the third stage of the drug discovery process - takes the filtered
list of potential molecules, all that have been confirmed to have some potential
relationship with the target, and further tests them to ensure they have the desired
effect. Pharmacokinetics (PK) and Pharmacodynamics (PD) are two methods in
studying the properties of a drug once absorbed/adsorbed in a patient.
Pharmacodynamics focuses on how a drug affects the organism, through chemical
binding to receptors and the immediate and post effect that binding has on the
organism. Pharmacokinetics, on the other hand, focuses on how an “organism
affects the drug”, figuring out how the chemical gets digested and transformed, from
when the drug enters the body to when it gets eliminated (either completely
dissolved or excreted).

This is also a good time to note that the drug discovery process, unlike how it's
depicted in the diagram above, is not always a linear process. There are many times
where the lead optimization stage finds that none of the potential leads found in the
lead discovery phase were viable - in which case, a new set of leads needs to be
created. This back and forth process of real-world drug creation schedules more
closely mimics the scientific process, shown below, rather than the linear diagram
shown above.
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Caption - Modified drug development pipeline that accounts for the non-linear flow
of work and multiple start points of a potential development pipeline

After viable drug candidates are found, there is still one more stage before clinical
trials - pre-clinical development.

This stage is crucial to ensure that a drug candidate is safe for human consumption.
More accurately, this stage ensures that a drug can’t cause serious harm in people.
There are two main methods this stage uses: in vivo, testing in living organisms, or in
vitro, testing outside of a living organism.

This is also where the dosage formulation is developed. Pharma companies gather
data on how a drug is absorbed, distributed, metabolized, and excreted (ADME) as
well as the best way to deliver the drug. PK/PD, as mentioned above, can also be
used in the pre-clinical phase to determine the safety of a drug.

The final stage before a drug can be sold is clinical trials and regulatory approval. To
ensure that all drugs are safe for human consumption, researchers/pharmaceutical
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companies need to go through rigorous testing, with clinical trials and results
approved by regulatory bodies (in the US, this is the Food and Drug Administration).

The clinical trial and regulatory approval phase is a pretty interwoven phase, where
the clinical trial process and results needs to be approved of by the trial location
country’s regulatory body - this means that the trials need to be scientifically sound,
have a large enough sample set, and that the results need to indicate safety and
efficacy.

Clinical efficacy is the measure of how well a drug does what it's supposed to do.
This is less of a concern for the FDA (the FDA mainly ensures the safety of the drug
when given to humans, and adherence to clinical trial endpoints) [40].

This stage itself has three typical phases. mirroring the three main clinical trials
pharmaceutical companies need to complete: Phase |, Phase Il, and Phase lIl.

Each of the phases both builds up in scale and tests different questions [35]. Phase |,
just like with the preclinical trial, focuses on ensuring a drug candidate is safe -
testing the dosage formulation from the preclinical trial and drug itself on, typically
healthy, human volunteers. Phase Il focuses on the effectiveness of a drug, testing
with sample sizes of a few hundred volunteers with the target disease, to see if the
drug candidate actually affects the drug target (and reduces its related disease).
Phase lll increases the scale of testing, ranging from sample sizes of hundreds to
several thousand patients with the target disease. This trial expands on the goal of
Phase Il, while providing the information needed for FDA approval of the drug.

One of the main concerns that pharma companies have for conducting clinical trials
is their cost, especially considering that only around 30% of drugs pass all 3 stages.
According to Martin et. al, the median trial cost for each respective phase is $3.4
million, $8.6 million, and $21.4 million - in total, this would be $33.4M for a phase il
clinical trial for a single drug [31]. Obviously, this makes it infeasible to clinically test
hundreds of these drugs, which emphasizes the importance of accurate lead
identification and generation.

Combinatorial Optimization
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Combinatorial optimization is the method of formalizing a problem to find an optimal
solution from a finite set of solutions.

A simple example of a combinatorial optimization problem is, given a list of numbers,
finding the sorted list. Our set of solutions would be all possible combinations of
numbers in the list and our optimal solution would be the list of sorted numbers.

The main goal with formalizing a problem is to use computers to search through the
solution space as, with many practical problems, the solution space is often
enormous.

In the drug discovery pipeline, the main type of solution space are the molecular
compounds that could potentially bind to a target, with each type of formalized
problem “ranking” the effectiveness of these compounds to do a certain task. There
are many different methods and formalized problems that quantify and optimize for
one type of metric, like optimal ligand pose or structure alignment to a known
molecule. There are, however, other solution spaces that exist towards the end of
the drug development process. For example, formalizing clinical trial schedules
encompasses a solution space that must optimize for the cost and efficiency of a
trial.

Combinatorial Optimization Problem #1: Molecular Docking
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Caption - Diagram from [32], visually showing the “lock-and-key” model of
protein-ligand docking interactions. Just like how a key fits perfectly into the grooves
of a lock, the ligand fits perfectly into the pocket of the protein.

The Molecular Docking problem, assumed to be an NP-Hard problem [6], focuses on
predicting how a ligand, a small molecule, binds to a protein’s pocket, the binding
site of the protein.

A protein’s shape dictates its function. Certain proteins have binding pockets to
accomplish the task they were designed for. For example, cationic trypsin, a
protease, helps digest food by breaking down proteins into smaller sets of amino
acids, which are the building blocks for other proteins [26][27]. Even though cationic
trypsin is an enzyme, its job only focuses on facilitating the breakdown of other
proteins and peptides [36][37][38], not other molecules (like lipids or inorganic
molecules). The way that cationic trypsin does this is by having the protein, that is
going to be broken down, bind to trypsin’s pocket. Then, the trypsin pocket uses
hydrolysis, the addition of a water molecule (H20) to separate a molecule into two
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parts through the donation of a H+ to one part and HO to the other part, to break
down the protein.

The key part of this process is the binding pocket and its binding sites - these
facilitate the entire process by providing a place for both proteins to interact with
each other. If a different molecule binds to cationic trypsin’s pocket, it could interfere
with the protein’s job. By changing the shape and conformal geometry of the protein
through site-specific intermolecular electronic contacts during docking, this small
molecule changes the function of cationic trypsin. This can make the protease
incompetent towards cleaving proteins into a transiently or permanently
dysfunctional state, i.e., protease inhibition.

Therefore, this binding site almost acts like a switch for proteins, which is extremely
useful in stopping the function of certain proteins - such as the HIV-1 Protease, the
protein that aids in HIV reproduction in cells [27][28]. While cationic trypsin is helpful
to humans by aiding in digesting food, the HIV-1 Protease protein cleaves Gag and
Pol polyproteins, long chains of amino acids, into individual, smaller functional
proteins into a form that aids in its reproduction. HIV-1 Protease creates the building
block to replicate. If drug companies could find a different molecule that binds to
HIV-1 Protease’s pocket and stays there, then we eliminate that protein’s function.
It's like throwing a wrench into the engine of a moving car - we can get the car to
stop dead in its tracks.

For pharmaceutical companies, the molecular docking problem is a formulation that
allows us to calculate if a small molecule, a ligand, will bind to a protein of interest.

Right now, there are a lot of existing softwares that perform molecular docking
between proteins and ligands - AutoDock Vina, rDock, and SEED are the major
molecular docking softwares [23].

Two quantum algorithmic approaches to solve the Molecular Docking problem (with
some designed to be run on three types of quantum processor units (QPUs)) are 1)
the Quantum Approximate Optimization Algorithm (QAOA), largely run on
gate-based quantum computers [4] [14], and 2) Quadratic Unconstrained Binary
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Optimization (QUBO) formulations, run on quantum annealers [18], and continuously
variable quantum devices.
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Caption - Molecular docking objective function formulation, where H_iso is the
sub-graph isomorphism term that ensures hard constraints are met to get valid
outputs and H_opt is the optimization term the simulated/quantum annealers
minimize over. A and B are scaling constants, usually experimentally determined, to
ensure hard constraints are met and x are binary variables that represent the
measured state of the qubits [18].

Combinatorial Optimization Problem #2: Pharma-based Supply Chain Optimization
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One of the most important stages of creating drugs is getting both the final products
and their subcomponents to their final destinations - optimizing pharmaceutical
supply chains is crucial in ensuring that drugs get to where they need to do 1) safely
and 2) quickly [11].

There are a couple of points of view for supply chain management. In this article, I'll
only focus on two of these POVs: the manufacturing side, and the hospital/end-user
side.

From the point of view of large, multinational pharmaceutical companies, the ones
that manufacture and distribute products, they’re focused primarily on answering
one main question: How do we make sure the drugs get to the end patient in the
shortest amount of time for the lowest cost? These companies also have constraints
they’re held accountable for - to make these deliveries safely, they need to make sure
they’re complying with regulations during shipping and, if needed, using
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refrigeration units or other specialized transport methodologies required for different
therapeutic deliveries to keep their contents from spoiling (which are speciality
shipping containers, refrigeration units are a very finite resource because they need
to be kept near electricity plugs throughout their journey) [15]. For companies like
Sinopharm, they’re especially focused on developing a green supply chain -
minimizing carbon output throughout their entire supply chain, from product creation
to end user use [20].

Hospitals, however, are focused on balancing consumption with cost [1]. They want
to answer the following question: how do we balance the inventory needs and
storage costs of hospitals? Hospitals, of course, need to make sure they’re always
stocked on the drugs they need - a shortage could cost someone’s life [16]. However,
just like in transport, storing these drugs is expensive. They need to be kept in a safe
environment and the drugs need to be used before their expiration date; many U.S.
hospitals are also not legally allowed to stockpile or independently manufacture
drugs to protect suppliers’ pricing and distribution schemes, forcing them to resort to
overly-fragile Just-In-Time supply management. Many hospitals outsource these
responsibilities to third-party storage companies - adding to the many expenses a
hospital has.

if and only if
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Large, multinational pharmaceutical companies have already started developing
solutions to these problems. Sinopharm, since 2020, has talked about their progress
to creating a near zero-carbon supply chain in their yearly Sustainability Reports -
they’ve released guidelines on “Green Supply Chain Construction” and for reducing
carbon output in constructing and managing supply chains through optimization
techniques in some internal whitepapers [39]. Merck and Co is looking into what
they are characterizing as Al solutions for supply chain resilience [8] - making sure
that, even in the face of disruptions, drugs can still get to where they need to go
on-time, though Merck and Co have not stated how exactly they would use Al or
other technologies to accomplish this goal. Johnson and Johnson is working on a
solution for supply/demand prediction and for supply chain optimizations to help
treatments reach patients faster.

The green supply chain optimization formulation by Umme et al. [20] focuses on a
case study - the researchers worked with a pharmaceutical company in Bangladesh
to reduce their carbon emissions throughout the entire supply chain. Umme et al.’s
work formulated a model to cover the journey from initial chemical supplier to
manufacturer to distributor to retailer. Their work in creating a mixed-integer linear
programming formulation provides an interesting gateway into a QUBO formulation
of the same problem. It would be interesting to look into the QUBO'’s ability to keep
into account the different hard constraints on the problem, and how to balance the
scaling parameters of each hard constraint to make sure the objective function is still
being met while generating valid solutions.
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Caption - Z1 optimizes over the total costs throughout the entire supply chain (from
supply, production, distribution storage, and all transportation connections between
the supply chain). Z2 minimizes the total carbon emissions throughout the supply
chain [20].

The formalized problem for hospital supply chain optimization is the Dynamic Filling
Drug Optimization problem. The objective function for this problem has three main
parts: the 1) medicine cost, mainly the cost of buying medicine weighted by the
priority of the type of drug being bought, the 2) storage cost (the cost of storing
medicine safely), and a 3) penalty cost to prevent supply shortages [1].
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Caption - Tarek et al. formulation of the Dynamic Filling Drug Optimization problem
with the medicine, storage, and shortage penalty costs added to the minimization
function (the first line), and the lowest mandatory drug, budget, and timeslot
constraints imposed on the problem listed in the lines below [1].

Tarek et al. relate the Dynamic Filling Drug Optimization problem with the formalized
Ski-Rental Problem. We have a person who wants to ski, but doesn’t know how long
the snow season will last; should one buy or rent skis to get the most for their
money? The Dynamic Filling Drug Optimization problem is especially challenging
because we don’t know the user's demand in advance, making shortage prediction
more difficult
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For these reasons, DFDO appears to be embeddable onto the Ski-Rental Problem
because both can be represented by the more famous Knapsack problem; given an
algorithm that perfectly finds solutions to the Ski-Rental problem (given that you
have the inputs to the ski-rental problem in the right format), you can do some quick
(polynomial-time) pre-processing for inputs of the DFDO problem to transform
DFDO inputs into Ski-Rental formatted inputs, run the Ski-Rental algorithm, and
then do some trivial post-processing to turn those Ski-Rental solutions into DFDO

solutions
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Caption - Comparison of optimal solution’s cost with the Deep Reinforcement
Learning (DRLD) model’s output cost from [1].

The solution by Tarek et al. was to use a deep reinforcement learning approach to
solve this problem to prevent these shortages. After experimental testing to
determine the learning rate, their algorithm converged on a solution that was very
close to the optimal solution, though they did not provide precise bounds between
the reinforcement approach’s output and the optimal solution.

Combinatorial Optimization Problem #3: Predicting Drug Synergy and Antagonism
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Drugs, when combined, don’'t always act in the same way as the sum of their parts

could lead one to believe. Certain drugs can have strong synergistic reactions, where

their effects are more than the sum of their parts, or they can have antagonistic
effects, canceling each other's effects out (i.e., they’re non-linear).

Predicting drug synergy is the key to combining drugs for many medications, done
with pharmacokinetics/pharmacodynamics. It could allow two existing drugs to
provide a greater reaction, while limiting the side effects that large doses of those
drugs could have individually. The combination achieves the same end result in a
safer manner [10]. Drug antagonist is the opposite reaction - where one drug
inhibits, or stops, the effect of another drug. Paying attention to these antagonistic
relationships ensures that we do not have two drugs that should be targeting
different ailments targeting each other [21].

Finding these synergies and antagonisms has historically been through trial and
error. AstraZeneca’s DREAM challenge [12], established in 2014, created a
community effort to computationally predict the effects of drug combinations; the
hope was to create an accurate method to drastically reduce the number of
combinations that needed expensive and time-consuming wet lab testing to prove
these drug synergies and antagonisms.
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The challenge was split up into two subchallenges, with the first objective function
was the average weighted Pearson correlation of the predicted vs observed synergy
scores across each drug combination. The second objective function was optimizing
the separation of predicted synergy and non-synergy scores through the ANOVA
score - which has a linear regression formulation that accounts for the drug
combination, cell line, and the binary synergy prediction vector [3].
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Caption - Standard form and linear regression formulation of the ANOVA formula
[12]

The top scoring team in all sub-challenges, Guan et al. from the University of
Michigan, was a novel network propagation [9], that inputted the information from
the individual drug’s effects and simulated molecular data, and used random walks
to transfer information throughout the algorithm’s saved network. They were able to
accurately predict the best synergistic drug pairs in 30% of the cell lines and were
able to correctly place the best synergistic drug pair in the top five predicted pairs in
73% of test cell lines.

Combinatorial Optimization Problem #4: Clinical Trial Design Optimization
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Clinical trial design is the key step in ensuring that the potential drug candidates
pharma companies create are both safe for human use and effective at their
proposed jobs in humans. There are many places to optimize clinical trial design, but
this article will only focus on three problems that have already been formalized:
optimizing the trial site [7], cohort identification, and drug dose scheduling [19].

Trial site optimization chooses the right site, with specific characteristics, for a
clinical trial. Cohort identification finds the right people for the trial - the goal is to
pick patients that are 1) relevant to the trial (they have the condition you want to
target with your drug) and 2) that the trial would benefit (especially if there isn't any
other effective treatment alternative for the specific condition the drug is targeting).
Drug dose scheduling personalizes the trial for each patient, making sure the trial
gives patients the right dose and at the right times to properly understand the
effects of the drug.

A few pharmaceutical companies are looking at using Al models to optimize these
problems. Johnson and Johnson is using Al to improve targeted clinical trial
recruitment - it's finding patients that could benefit from medicine that Johnson and
Johnson is making. Further description of what these Al methodologies are and if
they include combinatorial optimization have not been publicly disclosed as of now.
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Merck and Co has also partnered with McKinsey [8] and its Al arm QuantumBlack to
automate Clinical Study Reports w/ LLMs - reducing the time to finish the paperwork
behind running clinical trials.

For the algorithmic research on drug dose scheduling, Tsuchiwata et al. from Pfizer
[19] created a genetic algorithm to optimize the blood sample schedule (a similar
problem to the drug dose scheduling problem) for patients in a bioequivalence study
in pediatrics.

max

7
—I—MAPEAUC; + RMSPECmM + RMSPEAUCt

Fitness — ( Number _of samples )2 + MAPE¢

Caption - the fitness function for the blood scheduling genetic algorithm as a sum of
the mean absolutely percentage error (MAPE) and the root mean square percentage
error (RMSPE) [19]

Wang et al. developed a three-step optimization strategy [21] to optimize the
combination of drug therapies. Their work focuses on both the drug interactions (as
talked about in the prior section) but also the individual drug doses, and balancing
both to bring out the synergies between the two drugs - though they note that this is
only the first step in proving the efficiency and accuracy of combinatorial
optimization problems for combinatorial drug therapy.

Xopt = argmax E = arg max f(X) (1)

where X is the drug combination input; E is the efficacy output,
which can be any measurable and quantifiable parameter; [ is
the function relation between drug doses and efficacy; and X,
is the optimal combination that we need. Thus, the ‘phenotype-
driven medicine concept associates combinatorial drug therapy
with systems engineering and optimization theories.
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Caption - Wang et al. drug combination optimization formulation based on
optimizing phenotype combinations. [21]

Conclusion

Right now, molecular docking software has had the greatest success in the
applicability of combinatorial optimization to pharmaceutical development - with
well used and well characterized software, like AutoDesk Vina, providing molecular
docking capabilities, capable of running complex protein-ligand complexes from
PDBBind+ on home computers in reasonable times.

With regards to better solving these combinatorial optimization problems using
quantum algorithms or quantum devices most algorithms, especially around the
QAOA/VQE algorithms and QUBO formulations, have not been tested beyond small
case studies. For reference, the Molecular Docking QUBO paper [18] by Triuzzi et al.
tested their cost function on pockets with 15 atoms - resulting in QUBOs with fewer
than 100 variables. By comparison, most protein-ligand complexes on PDBBind
would have a QUBO size of around 50,000 to 150,000 variables, with the maximum
size being closer to 1,000,000 variables.

There has also been research on quantum algorithms for clinical trial design
optimization. Doga et al. mentions how optimizing trial site selection is extremely
similar to portfolio optimization, a problem that has both classical and quantum
algorithms for the finance industry. There is also a potential for quantum machine
learning for clinical trial simulations, but there are still difficulties in fully simulating
human biology - and assumptions and data taken from static measurements (like
x-ray crystallography) or animal based models can prove to be too inaccurate for
human clinical trials.

While quantum technology literature has been focused on the time and space
scaling of their algorithms - on if their algorithms are theoretically faster than
classical algorithm and if the number of qubits needed is feasible for future quantum
computers, there has been a lack of up-to-date algorithmic testing on quantum
hardware, which is quickly growing past the scale of small-scale test cases. Papers
on practical quantum algorithms have been shying away from using the growth of
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quantum processing units (QPUSs) to, in turn, scale the problem test sets on their
quantum algorithms. This makes it difficult to both empirically test scaling of
quantum algorithms and to compare outputs of quantum algorithms with their
state-of-the-art classical algorithm counterparts. But, current improvements in
combinatorial optimization, as covered in this post, combined with improvements in
quantum algorithms and various aspects of QPU development mean that this is an
area that should be greater emphasized in future work, including our own

Thank you for reading my blog post! I'd love to hear if you're working on a
biopharma related combinatorial optimization formulation that | didn’t mention or if
you're working on a better algorithm than the ones | covered!
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